

Sideline Utility of Commonly Used Concussion Tools to Detect Sport Related Concussion

Kristen P Ramsey MSEd¹, Johna L Register-Mihalik PhD², Josh Bloom MD, MPH¹, Ashley Yelmini MS³, Amanda Fitterer MS¹, Robert S Jordan MBA¹, Julie Phillippi MEd¹, Amanda Beatty MS¹, Daisy Nelson MS¹

CAROLINA FAMILY PRACTICE AND SPORTS MEDICINE, CARY, NC¹,
Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center² at
THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NC,
Apex Friendship High School, WAKE COUNTY PUBLIC SCHOOLS, CARY, NC³

BACKGROUND

- Current sideline assessment tools for sport-related concussion (SRC) focus on brief cognitive and balance tests to detect injury.
- Current tools do not include comprehensive assessments of the oculomotor or vestibular systems to detect impairment or symptoms that may occur following SRC.
- Evidence suggests that vestibular and oculomotor impairment and symptoms represent an important outcome to assess following concussion¹ and have shown to be present following a SRC.¹⁻⁴ On field dizziness, which is often a vestibular-related symptom, has been associated with a 6.4x increase risk for a prolonged recovery.⁵

The purpose of this investigation was to assess sideline utility of commonly used clinical measures to detect a Sport Related Concussion.

METHODS

Sample

- Prospective cohort study at a suburban public high school.
- Concussed and sport/age-matched controls
- American football male student-athletes 13-18 yrs. old
- Exclusion criteria: >2 prior concussions, prior brain surgery, and vestibular and/or oculomotor disorders.

Statistical Analyses

- Univariable logistic regression was utilized to investigate relationships between clinical outcomes and concussion status.
 Independent variables included:
 - Vestibular Ocular Motor Screening (VOMS) symptom provocation
 - Near Point Convergence
 - King-Devick (KD) Time
 - SCAT-3 Total Symptom Score
 - Standard Assessment of Concussion (SAC) Score
 - Modified Balance Error Scoring System (mBESS) Score
- To describe differences between the SRC and control groups, Mann-Whitney U-tests and Fisher's exact tests were used.

Sport Related Sideline Concussion Evaluation

on SCAT-3 King-Device Age Matched
Control
Evaluation

King-Devick
Vestibular Ocular Motor Screening

Evaluatio

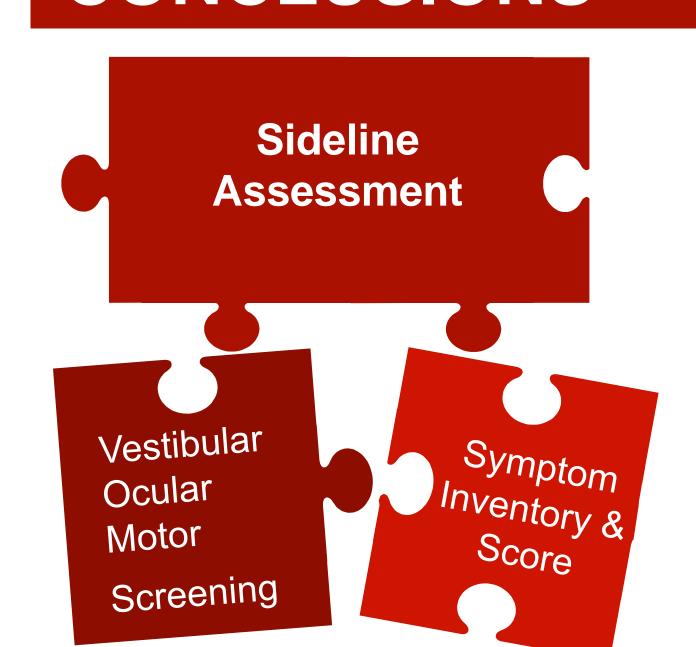
Within 15 minutes

Within 2 weeks

RESULTS

26 total participants were enrolled (13 SRC and 13 controls)

• Mean age= 15.7 ± 1.2 years, 100% male


Table 1. Means and 95% Confidence Intervals (CI) for Key Outcomes				
Variable	SRC Mean (95% CI)	Control Mean (95% CI)		
SCAT-3 Total Symptom Score	20.9 (9.8, 32.0)	3.3 (0.0, 6.6)		
Near Point Convergence	5 (2,8)	3 (2,4)		
KD Time	49.3 (36.0, 62.5)	54.7 (50.4, 58.9)		
SAC Score	24 (22.0, 26.0)	25.8 (24.2, 27.5)		
mBESS Score	6.5 (4.2, 8.9)	4.4 (3.1, 5.7)		

NOTE: Only total symptom score was significantly worse between the SRC vs. control group. KD time was slower in the control group (Exact p<0.05).

Table 2. Association between Key Clinical Measures and Concussion Group				
Variable	Odds Ratio (concussed vs. control)	95% Confidence Interval	AUC	
SCAT-3 Total Symptom Score	1.165	1.004 - 1.352	0.876	
Near Point Convergence	1.246	0.924 - 1.679	0.586	
KD Time	0.975	0.919 - 1.036	0.831	
SAC Score	0.813	0.613 – 1.077	0.659	
mBESS Score	1.356	0.945 - 1.946	0.717	

NOTE: All 6 individuals with VOMS symptom provocation were in the concussion group; the n was too small to run statistical models (n=6 with provocation).

CONCLUSIONS

- •Total symptom score provides valuable information on the sideline in determining suspected SRC.
- •VOMS symptom provocation may also be useful in detecting sideline abnormalities and screening should be included in sideline assessment.

REFERENCES

- 1. Mucha A, Collins MW, Elbin RJ, et al. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. 2014; 42(10): 2479-2477.
- 2. Ellis MJ, Cordingley DM, Vis S, et al. Clinical predictors of vestibulo-ocular dysfunction in pediatric sports-related concussion. J Neuro Peds. 2017; 19(1): 38-45.
- 3. Master CL, Scheiman M, Gallaway M, et al. Vision diagnoses are common after concussion in adolescents. Clin Peds. 2016; 55(3): 260-267.
- 4. Pearce KL, Sufrinko A, Lau BC, et al. Near point of convergence after a sport-related concussion measurement reliability and relationship to neurocognitive impairment and symptoms. Am J Sports Med. 2015; 43(12): 2055-2061
- 5. Lau BC, Kontos AP, Collins MW, et al. Which on field signs/symptoms predict protracted recovery from sport-related concussion among high school football players? Am J Sports Med. 2011; 39(11):2311-2318.

